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Non-local description of nematic liquid crystals
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Splaiul Independentei 313, R-77206, Romania

and G. BARBERO*

Dipartimento di Fisica del Politecnico di Torino and Istituto Nazionale di Fisica
della Materia, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

(Received 3 February 1998; accepted 4 March 1998 )

A non-local description of nematic liquid crystals is presented. By considering a generic two
body interaction, the total energy of a nematic sample is formally evaluated. It is given by a
generalized non-local functional. The minimization of the total energy shows that the actual
nematic tilt angle pro® le, characterizing the nematic director, is a solution of an integral
equation that in the simplest case is of the Freedholm type. This new equation takes the place
of the well known Euler± Lagrange equation used in the elastic theory of nematic liquid
crystals. The existence of sub-surface deformations localized close to the limiting surfaces is
studied by means of this integral equation. The analysis has been performed for cases of
strong and weak anchoring, with and without external ® elds. The sources of the subsurface
deformations are discussed in the framework of the usual Frank elastic theory.

1. Introduction The problem is very hard, and the only way of
distinguishing between rival theories is to examineThe elastic theory for nematic liquid crystals was

written down long ago by Oseen [1] and Zocher [2]. molecular models in the hope that they will throw light
on what is happening in the continuum theory. For thisAccording to these authors, the bulk elastic behaviour

of these media is described by three elastic constants, reason the investigations of the sub-surface deformation
have recently been performed employing semi-molecularusually indicated by k11 , k22 and k33 . They are connected

with three bulk fundamental deformations called, after models, without any use of elastic theory [20± 23]. In
these investigations the analyses were done by assumingFrank [3], splay, twist and bend, respectively. In the

elastic formulation proposed in [1, 2] there are also two an intermolecular interaction g between two molecules of
a nematic located in R and R ¾ =R + r. It usually dependssurface elastic constants, known as splay± bend and

saddle± splay elastic constants, indicated by K13 and K24 on the nematic orientation at R and R ¾ , that will be
indicated by n =n (R) and n ¾ =n (R ¾ ). Hence g =g (n, n ¾ ; r).and associated with the surface elastic contributions to

the total elastic energy. Then the total energy of the sample, which is given by
A long time ago it was shown that the K13 term in

the elastic expansion is unbounded from below [4± 6]. F =
1

2 P P g (n, n ¾ ; r)dtdt ¾ (1 )
In order to solve this intrinsic contradiction in the
elastic theory, di� erent recipes have been proposed. A

was evaluated in the lattice [20, 23] or continuumfew groups resolved the K13-problem by selectively
[21, 22] approximation. The actual pro® le n =n (R ) wasintroducing higher order gradient terms [7± 13]. This
obtained by minimizing F directly. The details of theoften leads to very rapid orientation changes close to
calculations and the simplifying hypotheses are discussedthe interface, known as sub-surface deformations. Other
in [20 ± 23]. The results of this kind of analysis are that:groups have proposed looking for the solution to the
(i ) if g depends not only on n ¯n ¾ and r=|r|, but also onelastic problem among solutions of the Euler± Lagrange
n ¯ u and n ¾ ¯u, where u = r/r, a sub-surface deformationequations valid for the bulk [14± 18], or by assuming
exists close to the interface, except in the special casesK13 is identically zero [19].
of planar or homeotropic surface alignments; (ii ) the
sources of this sub-surface deformation are the
K13-elastic constant and the uniform part of the elastic*Author for correspondence.
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190 A. L. Alexe-Ionescu and G. Barbero

energy density, (iii ) the K13-elastic constant is not well which describes the distorting e� ects of the incomplete
interaction.de® ned, and it does not depend only on the nematic

The paper is organized as follows. In § 2 the integralliquid crystal, but also on the existence of surface ® elds
equation satis® ed by the director ® eld minimizing F[24].
given by equation (1) is deduced. This integral equationIn this paper we shall present a non-local description
is the fundamental equation for a non-local descriptionof nematic liquid crystals in order to describe the nematic
of nematic liquid crystals. It takes the place of the wellorientation close to a substrate. This kind of analysis
known Euler± Lagrange equation used in the theory ofis not new. It goes back to Nehring and Saupe [25]
elasticity of these media. Particular types of inter-and it has been extensively used by density-functional
molecular interaction laws are considered in § 3 and § 4.theoretists [26± 32]. It has also been applied intensively
In § 5 a superposition of two simple intermolecularin [20± 23, 33]. Our aim is to ® nd, in the framework of
interactions is analysed. There we show that the existenceconstant density and scalar order parameter, the integral
of the sub-surface deformation in tilted nematic samplesequation whose solutions extremize the total energy in
follows immediately, without any calculations, from thethe non-local approach. In this way, the result that a
integral equation obtained before. The interaction of theuniform nematic orientation does not correspond to a
nematic liquid crystal with an external ® eld, in our non-stable state is evident, without any calculations. In
local approach, is discussed in § 6. The elastic descriptionparticular we will be able to re-obtain the result reported
of a nematic liquid crystal, with special emphasis on thein [34], deduced by means of a direct calculation of the
homogeneous part of the elastic energy density, and on® rst variation of the total free energy. An analysis similar
the linear terms in the ® rst and second derivatives isto the one developed in our paper, when the interparticle
presented in § 7. In § 8 the sources of the sub-surfaceinteraction is a generalized Maier± Saupe interaction
deformation in tilted nematic samples are analysed.[35], has been recently published by Texeira [36].
There, we show that the sub-surface deformation existsWe shall also show that in the elastic expansion of
whenever the homogeneous part of the elastic energythe total free energy in terms of the deformation tensor
density in the surface layer depends on the nematiccharacterizing the nematic distortion, the linear term is
director. In this case it is possible to introduce anabsent. From this result we can infer that the main
e� ective splay± bend elastic constant connected to thiselastic term connected with the spontaneous splay and
functional dependence. In § 9 the main results of our

with the splay± bend deformations [37] balance each
paper are critically discussed.

other, and the remaining parts renormalize the Frank
elastic constants. Hence, the K13 elastic constant dis-

2. Non-local descriptionappears from the free energy. This result agrees with that
We shall assume that the nematic liquid crystalobtained by Faetti and Riccardi [38] in one particular

occupies the z > 0 half space. When we do the slabcase. These authors in [38] reached this result by means
approximation, the surfaces of the slab will be assumedof a Taylor expansion of the intermolecular interaction
to be at z =Ô d/2 . The nematic director n is assumed toenergy in terms of the invariants characterizing the
be everywhere parallel to the ( y, z)-plane and given byinteraction. We show, on the contrary, that this result is
n (z)= (0, sin w(z), cos w(z) ), where w(z) is the tilt angle.very general and depends only on the symmetry of the
In this framework the total energy per unit surface ofnematic phase. Our result coincides also with the one
the sample due to the nematic± nematic interaction is

obtained recently by Yokoyama [39] in a completely
given by

di� erent and extremely complicated way. Finally we
shall show that the uniform part of the free energy

Fb= P 2

0 P2

0
f [w (z) , w(z ¾ ) ; z, z ¾ ] dz dz ¾ (2 )density reduces to an anchoring term plus a term similar

to the one connected with the K13-elastic term. The
where f [w(z) , w(z ¾ ); z, z ¾ ] is obtained by integratingconnection between this term, which in the past was
g [w(z) , w(z ¾ ); x , y, z, x ¾ , y ¾ , z ¾ ] over x , y, x ¾ and y ¾ . A simpleinterpreted as the source of the sub-surface deformation,
analysis shows thatand the uniform part of the free energy density is

discussed. Our conclusion about this term is that, even
f [w(z) , w (z ¾ ) ; z, z ¾ ]= f [w(z ¾ ) , w(z) ; z ¾ , z] . (3 )

if it can be interpreted as an e� ective splay± bend elastic
constant, it is not useful for an elastic description of Let us consider ® rst the case of strong anchoring, for
nematic liquid crystals. According to our view, an which w0=w (0 ) is ® xed by the short range nematic±
elastic description of a nematic liquid crystal close to a substrate interactions. In this case the function w(z)
surface has to be made in terms of the Frank elastic minimizing Fb given by equation (2) can be deduced by

operating in the usual manner [40]. Let wÄ (z) be theconstants k11 , k22 , k33 and of a delocalized surface ® eld
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191Non-local description of NL Cs

function minimizing Fb , and In equation (12), l is a molecular dimension and A a
positive constant. As is evident from equation (11), f =0

w(z) =wÄ (z) +eg (z) (4 )
for w (z ¾ )=w (z), otherwise f > 0. Hence f tends to induce
homogeneous orientation. Substituting equation (11)a function close to wÄ (z) in the variational sense [41]. e

into (10) one obtainsis a small parameter and g (z) an arbitrary function of
C1-class. Due to the strong anchoring hypothesis at
z=0, w(0 )=wÄ (0 )=w0 . Consequently g (0 )=0. However w(z) P 2

0
K (z, z ¾ ) dz ¾ = P2

0
K (z, z ¾ )w (z ¾ ) dz ¾ (13)

this condition does not play any important role here.
By substituting equation (4) into (2) we obtain at the

which is a homogeneous Freedholm integral equation® rst order in e
[42]. Hence in this non-local description, the actual tilt
angle distribution is the solution of equation (13). A

Fb (e) =Fb ( 0 ) + e P2

0 P2

0 G q f [w(z) , w(z ¾ ) ; z, z ¾ ]

qw(z)
g (z)

simple inspection shows that w(z) =w0 is a solution of
equation (13) which minimizes the total energy per unit
surface F given by (2). In fact for w(z)=w0 , F (w0 )=0,+

q f [w(z) , w (z ¾ ) ; z, z ¾ ]

qw(z ¾ )
g (z ¾ ) Hdz dz ¾ . (5 )

whereas for all other w(z), F (w(z) ) > 0. It follows that in
this case no sub-surface deformation exists. If the sampleFrom equation (3) it follows that
is a slab of thickness d, whose surfaces at z = Õ d/2

and z =d/2 are characterized by the surface tilt anglesP2

0 P2

0

q f [w(z) , w (z ¾ ) ; z, z ¾ ]

qw(z ¾ )
g (z ¾ ) dz dz ¾

w1=w(Õ d/2) and w2=w (d/2 ), equation (13) writes

w(z) P
d/2

Õ d/2
K (z, z ¾ ) dz ¾ = P

d/2

Õ d/2
K (z, z ¾ )w(z ¾ ) dz ¾ . (14)= P 2

0 P 2

0

q f [w (z) , w(z ¾ ) ; z, z ¾ ]

qw(z)
g (z) dz dz ¾ . (6 )

Consequently expansion (5) becomes From equation (14) we derive again that if w1=w2=w0 ,
then w(z)=w0 , Yz×[Õ d/2, d/2]. Other situations in which
w1 Þ w2 can be analysed by solving directly equation (14).Fb (e) =Fb ( 0 ) + 2e P 2

0 P2

0

q f [w(z) , w(z ¾ ) ; z, z ¾ ]

qw(z)
g (z) dz dz ¾ .

However, this aspect of the problem is not very important
in this context. It has been discussed in [43].(7)

Since wÄ (z) for the hypothesis minimizes Fb , it follows
3. Maier± Saupe interactionthat

The Maier± Saupe interaction [44] is of the kind

A dFb

de B e=0
=0. (8 ) gMS= Õ CMS exp (r/re)

2
(n ¯ n ¾ )2 (15)

where CMS is a positive constant and re a molecularHence from equation (7) one deduces
dimension [21]. Using gMS , f [w(z) , w(z ¾ ); z, z ¾ ] appearing
in equation (2) is found to be, besides a w(z)-independentP2

0 P2

0

q f [w(z) , w (z ¾ ) ; z, z ¾ ]

qw(z)
g (z) dz dz ¾ =0 (9 )

contribution

Yg (z)×C1-class. As well known from equation (9) it f [w(z) , w(z ¾ ) ; z, z ¾ ]=m (z, z ¾ ) sin2[w(z ¾ ) Õ w (z) ] (16)
follows that [41]

where the kernel m(z, z ¾ ) is given by [21]

P2

0

q f [w(z) , w(z ¾ ) ; z, z ¾ ]

qw(z)
dz ¾ =0 (10)

m (z, z ¾ ) =DMS expC Õ A z ¾ Õ z

re B
2D (17)

which is an integral equation. Hence the continuous
functions extremizing the functional (2) are solutions of and DMS is a new positive constant. Substituting
integral equation (10). equation (16) into (10) one ® nds

As an example, let us consider the case in which

P2

0
m (z, z ¾ ) sin{2[w (z ¾ ) Õ w(z) ]} dz ¾ =0 (18)f [w (z) , w(z ¾ ) ; z, z ¾ ]=K (z, z ¾ ) [w(z ¾ ) Õ w(z) ]2 (11)

where the kernel K (z, z ¾ ) is of the kind
which has the solution w(z)=w0 , Y z×(0, 2 ). Hence, in
this case also the sub-surface deformation is absent. InK (z, z ¾ ) =A expC Õ A z ¾ Õ z

l B
2D . (12)

the slab approximation, discussed at the end of the
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192 A. L. Alexe-Ionescu and G. Barbero

previous section, equation (18) writes By substituting equation (22) into (10), one has

P
d/2

Õ d/2
m (z, z ¾ ) sin{2[w(z ¾ ) Õ w(z) ]} dz ¾ =0 (19) sin[ 2w(z)]G P2

0
a (z, z ¾ ) dz ¾ + P2

0
b (z, z ¾ ) cos2

w(z ¾ ) dz ¾ H
whose boundary conditions are w1=w(Õ d/2 ) and

=cos[2w(z) ] P 2

0
2c(z, z ¾ ) sin[2w(z ¾ ) ] dz ¾ . (26)w2=w(d/2 ), as discussed above. Again if w1=w2=w0 ,

w(z)=w0 , Yz×[Õ d/2 , d/2 ] is a solution of equation (19),
which minimizes the total energy per unit surface If w0=0 or w0=p/2, w(z)=0 or w(z)=p/2, Y z×(0, 2 )
F , because F (w0 )=0, whereas for any other w(z), is a solution of equation (26). In this case no sub-surface
F (w(z) ) > 0. If w1 Þ w2 , w(z) is not constant across the deformation exists. However, if w0 is di� erent from 0 or
sample. In this situation one obtains from equation (19) p/2, w(z)=w0 is no longer a solution of the integral

equation (26). In this case a sub-surface deformation
cos[2w(z) ] P

d/2

Õ d/2
m (z, z ¾ ) sin[2w(z ¾ ) ] dz ¾ localized close to the surface exists and occurs over

a few molecular lengths. In the slab approximation
equation (26) writes

= sin[ 2w(z) ] P
d/2

Õ d/2
m (z, z ¾ ) cos[2w(z ¾ ) ] dz ¾ (20)

sin[2w(z) ]G P d/2

Õ d/2
a (z, z ¾ ) dz ¾ + P

d/2

Õ d/2
b (z, z ¾ ) cos2

w(z ¾ ) dz ¾ Hwhich is a kind of non-linear integral equation of the
Freedholm type.

=cos[ 2w(z) ] P
d/2

Õ d/2
2c(z, z ¾ ) sin[2w(z ¾ ) ] dz ¾ (27)4. Nehring-Saupe interaction

The Nehring-Saupe interaction [25] is of the kind
where, in the strong anchoring case, w1=w(Õ d/2 ) and

gNS= Õ
CNS

r
6 [n ¯n ¾ Õ 3 (n ¯ u) (n ¾ ¯ u) ]2 (21) w2=w(d/2 ).

where CNS is a positive constant and u = r/r. By using
5. Superposition of the Maier± Saupe and

equation (21), f [w(z), w(z ¾ ); z, z ¾ ] appearing in equation (2)
Nehring ± Saupe interactions

is found to be [33, 21] Let us consider now the more general case in which
f [w(z) , w(z ¾ ) ; z, z ¾ ]=CNS{a(z, z ¾ ) [cos2

w(z) + cos2
w(z ¾ ) ] f appearing in equation (2) is a superposition of the

Maier± Saupe and Nehring± Saupe interactions of the
+ b (z, z ¾ ) cos2

w(z) cos2
w (z ¾ )

kind
+ c(z, z ¾ ) sin[2w(z) ] sin[2w(z ¾ ) ]}

f = ( 1 Õ e) fMS+ e fNS (28)
(22)

where fMS and fNS are given by equations (16) and (22)where, besides a multiplicative constant,
reported above, and 0 < e < 1. In this case equation (10)

a(z, z ¾ ) gives

=G Õ 3 (z ¾ Õ z) Õ
4
, for |z ¾ Õ z| > re ,

63 (z ¾ Õ z)
4 Õ 88 (z ¾ Õ z)

2+ 22, for |z ¾ Õ z| < re cos[2w(z) ] P2

0
[ ( 1 Õ e)m (z, z ¾ )+2ec(z, z ¾ ) ] sin[2w(z ¾ ) ] dz ¾

(23)
= sin[2w(z) ]Ge P 2

0
[a(z, z ¾ ) +

1

2
b (z, z ¾ ) ] dz ¾b(z, z ¾ )

=G Õ 9 (z ¾ Õ z) Õ
4
, for |z ¾ Õ z| > re ,

Õ 171 (z ¾ Õ z)
4+ 200 (z ¾ Õ z)

2 Õ 38, for |z ¾ Õ z| < re
+ P 2

0
[ (1 Õ e)m(z, z ¾ ) +

e

2
b (z, z ¾ ) ] cos[2w(z ¾ ) ] dz ¾ H.

(24) (29)
and

This equation shows that the homogeneous orientation
c(z, z ¾ ) w(z)=w0 , Y z×(0, 2 ) extremizes the total energy only if

w0=0 or w0=p/2. For w0 di� erent from these values, a
=G 0, for |z ¾ Õ z| > re ,

36 (z ¾ Õ z)
4 Õ 40 (z ¾ Õ z)

2 + 4, for |z ¾ Õ z| < re .
sub-surface deformation exists. If e %1, i.e. the Nehring±
Saupe contribution to f is very small, equation (29)
may be solved in a perturbative way. In fact, for e =0,(25)
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193Non-local description of NL Cs

w(z)=w0 is a solution of equation (29). In the limit of interaction. In our non-local description it is given by
equation (2) in which f [w (z), w (z ¾ ); z, z ¾ ] depends onsmall e we put
the intermolecular interaction. Let us assume now that

w(z) =w0+ eQ (z) . (30)
the nematic liquid crystal is submitted to an external

By substituting equation (30) into (29), at the ® rst order ® eld, whose interaction with the nematic molecules is
in e one ® nds that Q(z) is a solution of the integral described by fe[w (z); z]. This ® eld could be the one
equation describing the interaction among the molecules of the

nematic liquid crystal and those of the solid substrate
limiting the sample. Alternatively, it could be an externalP 2

0
m (z, z ¾ )Q(z ¾ ) dz ¾ Õ Q (z) P2

0
m (z, z ¾ ) dz ¾ =h (w0 ; z)

magnetic or electric ® eld. If an external ® eld is taken
into account the total energy per unit surface, in the(31)
slab approximation, is given by

where h (w0 ; z) is given by

F =Fb+ Fe= P
d/2

Õ d/2 P
d/2

Õ d/2
f [w (z) , w(z ¾ ) ; z, z ¾ ] dz dz ¾

h (w0 ; z) =
1

2
sin ( 2w0 )C P2

0
a (z, z ¾ ) dz ¾

+ P
d/2

Õ d/2
fe[w (z) ; z] dz. (36)

+ cos2
w0 P 2

0
b (z, z ¾ ) dz ¾

An analysis similar to the one reported in § 2 shows
that the continuous function extremizing F given byÕ 2 cos( 2w0 ) P 2

0
c(z, z ¾ ) dz ¾ D . (32)

equation (36) is a solution of the integral equation

Equation (31) is of the kind
2 P

d/2

Õ d/2

q f [w(z) , w(z ¾ ) ; z, z ¾ ]

qw(z)
dz ¾ +

q fe[w(z) ; z]

qw(z)
=0.

Q(z) = P2

0
H (z, z ¾ )Q (z ¾ ) dz ¾ Õ L (w0 ; z) (33)

(37)

As underlined above, the external ® eld interaction haswhere
to take into account the interaction with the substrate,
fs[w (z); z], and with the magnetic or electric ® eld actingH (z, z ¾ ) =

m (z, z ¾ )

P2

0
m (z, z ¾ ) dz ¾

on the nematic, ff[w(z); z]. Usually fs[w (z); z] is di� erent
from zero only in two thin surface layers close to the
bounding walls. On the contrary ff[w(z); z] depends on

and z only through w(z) , because the external ® elds can often
be considered position independent. Simple expressions

L (w0 ; z) =
h (w0 ; z)

P2

0
m (z, z ¾ ) dz ¾

. (34) for these energy densities are

fs[w(z) ; z]=w1 (z) sin2[w1 Õ w(z) ] + w2 (z) sin2[w2 Õ w(z) ]

(38)As is well known from the theory of integral equations,
the solutions of equation (33) can be obtained by means and
of iterated kernels [42]. The ® nal result is that Q(z) is
given by f f[w(z) ; z]= Õ

1

2
ea E

2 cos2[wE Õ w(z) ]. (39)

Q (z) = Õ L (w0 ; z) + P 2

0
H (z, z ¾ )L (w0 ; z ¾ ) dz ¾ (35) In equation (38) w1,2 are the easy directions and w1,2

the anchoring energy strengths [45]. In the strong
anchoring case considered above w i(z)=W id(z Ô d/2 ),where H (z, z ¾ ) is the iterated kernel [42]. From
where d(z) is the Dirac’s function, and W i � 2. Inequations (35) and (32) it follows that the amplitude
equation (39) ea is the macroscopic anisotropy of theof the sub-surface deformation vanishes for w0=0 and
nematic liquid crystal with respect to the external ® eldw0=p/2, due to the presence of the factor sin (2w0 ). This
E at an angle wE with the z-axis [46].result agrees with that obtained in another way [21, 22].

An analysis of the same kind as presented above
shows that if w1=w2=w0 , di� erent from 0 and p/2,6. Interaction of a nematic liquid crystal with an

external ® eld and E =0, the homogeneous orientation w(z)=w0 ,
Yz×[Õ d/2 , d/2 ] is a solution of equation (37) ifIn the previous sections we have considered the total

energy per unit surface due to the intermolecular f = fMS , whereas if f = fNS it is not. The in¯ uence of the
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194 A. L. Alexe-Ionescu and G. Barbero

penetration range of the surface forces on the sub-surface for the second contribution. As is evident from equations
(41) and (42)deformation, taking into account the spatial variation

of the scalar order parameter, when the interaction
dw(z ¾ , z) = Õ dw(z, z ¾ ) . (43)energy g is a special kind of modi® ed Maier± Saupe

interaction, has been discussed recently by Texeira [36]. In the limit of small deviations from the reference state,
If w1 Þ w2 and E Þ 0, there is a sharp variation of the simple calculations give
nematic orientation localized close to the surfaces, and

f [w (z) , w(z ¾ ) ; z, z ¾ ]=F [w(z) ; z, z ¾ ] + A[w(z) ; z, z ¾ ]dw(z, z ¾ )a smooth spatial variation localized over a length which
is proportional to 1/E.

+
1

2
C[w(z) ; z, z ¾ ] [dw(z, z ¾ ) ]2 (44)

7. Elastic description of a nematic liquid crystal

andIn the previous sections we have presented a non-
local description of a nematic liquid crystal. It is based

f [w(z ¾ ) , w(z) ; z ¾ , z]=F [w(z ¾ ) ; z ¾ , z]+ A[w(z ¾ ) ; z ¾ , z]dw(z ¾ , z)
on the total energy per unit surface given by equation (2),
where f [w(z) , w(z ¾ ); z, z ¾ ] is evaluated directly from the

+
1

2
C[w(z ¾ ) ; z ¾ , z] [dw(z ¾ , z) ]2 (45)intermolecular interaction energy. In the analysis we

have assumed the problem to be planar and one dimen-
wheresional. However the generalization to three dimensional

problems does not present any conceptual di� culty. In F[w (z) ; z, z ¾ ]= f [w(z) , w(z) ; z, z ¾ ] (46)
this section we now show that it is possible to derive
from equation (2) an elastic energy density. This analysis

A[w(z) ; z, z ¾ ]=G q f [w(z) , w(z ¾ ) ; z, z ¾ ]

qw(z ¾ ) Hw(z ¾ )=w(z)
(47)

is not new; it was discussed several years ago by Nehring
and Saupe [25]. Some years ago the analysis by Nehring

andand Saupe was critically discussed by Somoza and
Tarazona [47] and by Texeira et al. [48], mainly in

C[w(z) ; z, z ¾ ]=G q2
f [w(z) , w (z ¾ ) ; z, z ¾ ]

qw(z ¾ )2 Hw(z ¾ )=w(z)
.connection with the meaning of the surface-like elastic

constants. Recently Yokoyama [39] has shown that
linear terms in the derivatives of any order give no (48)
contribution to the total energy per unit surface given

In a similar manner are de® ned F[w(z ¾ ); z ¾ , z], A[w(z ¾ ); z ¾ , z]by equation (2). This conclusion implies that the contri-
and C [w (z ¾ ); z ¾ , z]. By substituting the expansions (44)bution to the elastic energy of terms like k1 and K13
and (45) into equation (40), we obtainbalance each other. In this framework, the source of the

sub-surface deformation is not the K13-elastic constant. Fb=Fbu+ Fb1+ Fb2
This result has already been partially discussed by Faetti

whereand Riccardi [34, 38]. In this section we shall show that
the homogeneous part of f could be considered to be
the source of the sub-surface deformation. Fbu= P

d/2

Õ d/2 P
d/2

Õ d/2
F [w(z) ; z, z ¾ ] dz dz ¾ (49)

To obtain the elastic approximation of equation (2),
let us rewrite Fb as follows is the total energy per unit surface at the reference state

Fb=
1

2 G P d/2

Õ d/2 P
d/2

Õ d/2
f [w(z) , w(z ¾ ) ; z, z ¾ ] dz dz ¾

Fb1=
1

2 P
d/2

Õ d/2 P
d/2

Õ d/2
{A[w(z) ; z, z ¾ ]dw(z, z ¾ )

+ A[w(z ¾ ) ; z ¾ , z]dw(z ¾ , z) } dz dz ¾ (50)+ P
d/2

Õ d/2 P
d/2

Õ d/2
f [w(z ¾ ) , w(z) ; z ¾ , z] dz dz ¾ H . (40)

is the term of the ® rst order in dw, and
In the ® rst addendum the reference state is the one
described by w(z), and in the second addendum it is Fb2=

1

4 P
d/2

Õ d/2 P
d/2

Õ d/2
{C[w(z) ; z, z ¾ ] [dw(z, z ¾ ) ]2

the one described by w(z ¾ ) . For small deviations from
the reference state we have

+ C[w(z ¾ ) ; z ¾ , z] [dw(z ¾ , z) ]2
} dz dz ¾ (51)

w(z ¾ ) =w(z) + dw(z, z ¾ ) (41)
is the term of second order in the variation with respect
to the reference state. Sincefor the ® rst contribution, and

w (z) =w (z ¾ ) + dw(z ¾ , z) (42) f [w(z) , w(z ¾ ) ; z, z ¾ ]= f [w(z) , w(z ¾ ) ; z ¾ , z] (52)
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195Non-local description of NL Cs

because the interaction energy depends only on |z ¾ Õ z|, deformation is then the functional dependence of g on
n ¯ u and n ¾ ¯u. Since in the Nehring± Saupe model the k1we deduce that
(spontaneous splay) and the K13 (splay± bend)-elastic

A[w(z ¾ ) ; z ¾ , z]=A[w(z ¾ ) ; z, z ¾ ]
constants depend also on this functional dependence,

and the sub-surface deformation was considered to be due
to elastic contributions, linear in the ® rst and second

C[w(z ¾ ) ; z ¾ , z]=C[w(z ¾ ) ; z, z ¾ ] . (53)
order derivatives, to the elastic energy density [49].

Hence, by taking into account equation (43), Fb1 and More recently it has been suggested that the homo-
Fb2 can be rewritten in the form geneous part of the energy density F[w (z); z, z ¾ ] could

also contribute to the sub-surface deformation [20± 23].
Now we wish to show that:Fb1=

1

2 P
d/2

Õ d/2 P
d/2

Õ d/2
{A[w(z) ; z, z ¾ ]

(i ) the linear elastic contributions connected to k1
Õ A[w(z ¾ ) ; z, z ¾ ]}dw(z, z ¾ ) dz dz ¾ (54) and K13 , renormalize the usual Frank’s elastic

constants and hence they do not induce anyand
sub-surface deformation;

(ii ) the homogeneous part of the energy density is
Fb2=

1

4 P
d/2

Õ d/2 P
d/2

Õ d/2
{C[w(z) ; z, z ¾ ]

the only one responsible for the deformation
localized close to surface;

+ C[w(z ¾ ) ; z, z ¾ ]}[dw(z, z ¾ ) ]2 dz dz ¾ . (55) ( iii ) by means of F[w (z); z, z ¾ ] it is possible to de® ne
an e� ective K13-elastic constant, connected to anAs is evident from equation (54), Fb1 is actually of
elastic term similar to the one introduced bysecond order in dw (z, z ¾ ), because
Nehring and Saupe.

A[w(z) ; z, z ¾ ] Õ A[w(z ¾ ) ; z, z ¾ ]=B[w(z) ; z, z ¾ ]dw(z, z ¾ )
To obtain an expression for the elastic density from

(56) equation (58), dw (z, z ¾ ) has to be expanded in power
series of (z ¾ Õ z) . As is well known, an elastic descriptionwhere
works well only if the intermolecular interactions are
short range. In this case f [w (z), w (z ¾ ); z, z ¾ ] is di� erentB[w (z) ; z, z ¾ ]= Õ G qA[w (z ¾ ) ; z, z ¾ ]

qw(z ¾ ) Hw(z ¾ )=w(z)
. (57)

from zero only for |z ¾ Õ z| of the order of a few molecular
dimensions. The same conclusion holds true forConsequently at the second order in dw(z, z ¾ ) , the total
A[w(z); z, z ¾ ], B[w(z); z, z ¾ ], C [w(z); z, z ¾ ] and D [w(z); z, z ¾ ],energy per unit surface is given by
which are obtained from f [w (z), w (z ¾ ) ; z, z ¾ ]. In this
framework we have

Fb=Fbu+
1

2 P
d/2

Õ d/2 P
d/2

Õ d/2
D[w(z) ; z, z ¾ ] [dw(z, z ¾ ) ]2 dz dz ¾

dw(z, z ¾ ) = A dw

dz B z
(z ¾ Õ z) +

1

2 A d2
w

dz
2 B z

(z ¾ Õ z)
2+ ¼

(58)

where we have put (60)

D[w(z) ; z, z ¾ ]=B[w(z) ; z, z ¾ ] + C[w(z) ; z, z ¾ ] . (59) By substituting equation (60) into (58) simple calculations
giveExpression (58) can be used to build an elastic theory

for nematic liquid crystals (for planar deformations) in
Fb=Fbu+

1

2 P
d/2

Õ d/2
k[w(z) ; z] A dw

dz B
2

dz (61)the slab approximation. It shows clearly that linear
terms in dw (z, z ¾ ) are absent, when the reference state

at the lowest order. In equation (61), k [w(z); z] playsused for the elastic description is the stable one.
the role of elastic constant, and is de® ned by

8. The sources of the sub-surface deformation

k[w(z) ; z]= P
d/2

Õ d/2
(z ¾ Õ z)

2
D[w(z) ; z, z ¾ ] dz ¾ . (62)In the non-local analysis of the nematic liquid crystal

pro® le we have shown that the Nehring± Saupe inter-
molecular interaction gNS gives rise to a sub-surface In the bulk, k [w(z) ; z] does not depend explicitly on z if

f [w (z), w(z ¾ ); z, z ¾ ] is su� ciently peaked around z ¾ = z,deformation, except in the special cases of planar or
homeotropic surface alignments. As discussed elsewhere, and hence k =k [w (z)]. Since in equation (61) there are

no terms linear in dw/dz or in d2
w/dz

2, it follows thata sharp variation of the nematic orientation close to the
substrate exists whenever g depends not only on n ¯ n ¾ , the contributions to the elastic energy connected to the

spontaneous splay (k1 ) , or to the splay± bend (K13 ) elasticbut also on n ¯u and n ¾ ¯u. The origin of the sub-surface
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196 A. L. Alexe-Ionescu and G. Barbero

constants cancel each other. Hence they cannot be the an intrinsic anchoring energy Fbu (w0 ) and a term having
the same structure as that of the K13-elastic term pro-source of the sub-surface deformation. Let us consider

now the homogeneous part of the total energy. It is posed by Nehring and Saupe. It follows that R could be
interpreted as an è� ective’ splay± bend elastic constant.given by equation (49), that we rewrite as
However, this è� ective’ elastic constant is not useful for
an elastic description of a nematic close to a substrate,Fbu= P

d/2

Õ d/2
G [w(z) ; z] dz (63)

because the relevant variational problem is ill posed
[4 ± 6].where

It is possible to analyse the problem from another
point of view. In the simple case under consideration

G [w(z) ; z]= P
d/2

Õ d/2
F [w(z) ; z, z ¾ ] dz ¾ . (64)

the total energy is given by

In the bulk, i.e. for z di� erent from Ô d/2 more than a
Fb= P 2

0 GG [w(z) ; z] +
1

2
k[w (z) ; z] A dw

dz B
2 Hdz.few molecular dimensions, G reduces to a constant if

f [w(z) , w(z ¾ ); z, z ¾ ] is su� ciently peaked around z= z ¾ .
(72)For the sake of simplicity let us consider the case in

which the nematic sample occupies the z > 0 half space. Let us consider strong anchoring on the limiting surface:
In this case equations (63) and (64) write w(0 )=w0 . The nematic pro® le is obtained as usual by

minimizing Fb written above. The Euler± Lagrange
Fbu= P 2

0
G [w(z) ; z] dz (65) equation for w(z) is found to be

and k[w(z) ; z]
d2

w

dz
2 +

1

2

qk

qw A dw

dz B
2

+
qk

qz

dw

dz
Õ

qG

qw
=0.

G [w(z) ; z]= P 2

0
F[w (z) ; z, z ¾ ] dz ¾ . (66) (73)

In the simple case in which k is w(z)-independent, this
In the limit of small sub-surface deformation, for z close

di� erential equation reduces to
to the limiting surface we have

k (z)
d2

w

dz
2 +

qk

qz

dw

dz
Õ

qG

qw
=0. (74)

w(z) =w0 + A dw

dz B0
z + ¼ (67)

Since G depends on w by means of cos2
w, the

whereas in the bulk w(z)=wb . Substituting equation (67)
Euler ± Lagrange equation may be rewritten ® nally as

into (66) and the result into (65) we obtain

k (z)
d2

w

dz
2 +

qk

qz

dw

dz
+ U (w, z) sin ( 2w) =0 (75)

Fbu=Fbu (w0 ) + R (w0 ) A dw

dz B0
(68)

where
where

U (w, z) =
qG

q(cos2
w)

. (76)
Fbu (w0 ) = P2

0
G (w0 ; z) dz (69)

Equation (75) shows that:and
(i ) U (w, z) acts as an external distortion ® eld,

( ii ) if a deformation is already present, the z-dependenceR (w0 ) = P 2

0
zG qG [w(z) ; z]

qw(z) Hw(z)=w0

dz. (70)
of the elastic constant also gives rise to a distortion.

A simple analysis reported elsewhere [21, 22] shows Since U and qk/qz Þ 0 applies only in a surface layer
that R (w0 )=R sin (2w0 ), where R still depends on w0 , whose thickness is of the order of the range of the forces
but it does not vanish for w0=0 and for w0=p/2. Hence responsible for the nematic phase, we can conclude that
equation (68) becomes U and qk/qz are sources of sub-surface deformations.

Hence, in order to avoid ill posed problems, it is better
Fbu=Fbu (w0 ) + R sin ( 2w0 ) A dw

dz B 0
. (71) to take into account the distorting e� ects of the incom-

plete nematic interaction by means of a delocalized
surface ® eld due to the spatial variation of the elasticFrom equation (71) we can conclude that the homo-

geneous part of the total energy can be separated into constant and to the uniform part of the free energy
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